3.12.88 \(\int \frac {(d+e x^2)^{3/2} (a+b \arctan (c x))}{x^2} \, dx\) [1188]

3.12.88.1 Optimal result
3.12.88.2 Mathematica [N/A]
3.12.88.3 Rubi [N/A]
3.12.88.4 Maple [N/A] (verified)
3.12.88.5 Fricas [N/A]
3.12.88.6 Sympy [N/A]
3.12.88.7 Maxima [F(-2)]
3.12.88.8 Giac [F(-1)]
3.12.88.9 Mupad [N/A]

3.12.88.1 Optimal result

Integrand size = 23, antiderivative size = 23 \[ \int \frac {\left (d+e x^2\right )^{3/2} (a+b \arctan (c x))}{x^2} \, dx=\frac {3}{2} a e x \sqrt {d+e x^2}-\frac {a \left (d+e x^2\right )^{3/2}}{x}+\frac {3}{2} a d \sqrt {e} \text {arctanh}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )+b \text {Int}\left (\frac {\left (d+e x^2\right )^{3/2} \arctan (c x)}{x^2},x\right ) \]

output
-a*(e*x^2+d)^(3/2)/x+3/2*a*d*arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))*e^(1/2)+3/ 
2*a*e*x*(e*x^2+d)^(1/2)+b*Unintegrable((e*x^2+d)^(3/2)*arctan(c*x)/x^2,x)
 
3.12.88.2 Mathematica [N/A]

Not integrable

Time = 11.62 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \frac {\left (d+e x^2\right )^{3/2} (a+b \arctan (c x))}{x^2} \, dx=\int \frac {\left (d+e x^2\right )^{3/2} (a+b \arctan (c x))}{x^2} \, dx \]

input
Integrate[((d + e*x^2)^(3/2)*(a + b*ArcTan[c*x]))/x^2,x]
 
output
Integrate[((d + e*x^2)^(3/2)*(a + b*ArcTan[c*x]))/x^2, x]
 
3.12.88.3 Rubi [N/A]

Not integrable

Time = 0.40 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {5517, 247, 211, 224, 219, 5560}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (d+e x^2\right )^{3/2} (a+b \arctan (c x))}{x^2} \, dx\)

\(\Big \downarrow \) 5517

\(\displaystyle a \int \frac {\left (e x^2+d\right )^{3/2}}{x^2}dx+b \int \frac {\left (e x^2+d\right )^{3/2} \arctan (c x)}{x^2}dx\)

\(\Big \downarrow \) 247

\(\displaystyle a \left (3 e \int \sqrt {e x^2+d}dx-\frac {\left (d+e x^2\right )^{3/2}}{x}\right )+b \int \frac {\left (e x^2+d\right )^{3/2} \arctan (c x)}{x^2}dx\)

\(\Big \downarrow \) 211

\(\displaystyle a \left (3 e \left (\frac {1}{2} d \int \frac {1}{\sqrt {e x^2+d}}dx+\frac {1}{2} x \sqrt {d+e x^2}\right )-\frac {\left (d+e x^2\right )^{3/2}}{x}\right )+b \int \frac {\left (e x^2+d\right )^{3/2} \arctan (c x)}{x^2}dx\)

\(\Big \downarrow \) 224

\(\displaystyle a \left (3 e \left (\frac {1}{2} d \int \frac {1}{1-\frac {e x^2}{e x^2+d}}d\frac {x}{\sqrt {e x^2+d}}+\frac {1}{2} x \sqrt {d+e x^2}\right )-\frac {\left (d+e x^2\right )^{3/2}}{x}\right )+b \int \frac {\left (e x^2+d\right )^{3/2} \arctan (c x)}{x^2}dx\)

\(\Big \downarrow \) 219

\(\displaystyle b \int \frac {\left (e x^2+d\right )^{3/2} \arctan (c x)}{x^2}dx+a \left (3 e \left (\frac {d \text {arctanh}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{2 \sqrt {e}}+\frac {1}{2} x \sqrt {d+e x^2}\right )-\frac {\left (d+e x^2\right )^{3/2}}{x}\right )\)

\(\Big \downarrow \) 5560

\(\displaystyle b \int \frac {\left (e x^2+d\right )^{3/2} \arctan (c x)}{x^2}dx+a \left (3 e \left (\frac {d \text {arctanh}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{2 \sqrt {e}}+\frac {1}{2} x \sqrt {d+e x^2}\right )-\frac {\left (d+e x^2\right )^{3/2}}{x}\right )\)

input
Int[((d + e*x^2)^(3/2)*(a + b*ArcTan[c*x]))/x^2,x]
 
output
$Aborted
 

3.12.88.3.1 Defintions of rubi rules used

rule 211
Int[((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[x*((a + b*x^2)^p/(2*p + 1 
)), x] + Simp[2*a*(p/(2*p + 1))   Int[(a + b*x^2)^(p - 1), x], x] /; FreeQ[ 
{a, b}, x] && GtQ[p, 0] && (IntegerQ[4*p] || IntegerQ[6*p])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 247
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^ 
(m + 1)*((a + b*x^2)^p/(c*(m + 1))), x] - Simp[2*b*(p/(c^2*(m + 1)))   Int[ 
(c*x)^(m + 2)*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && GtQ[p, 
0] && LtQ[m, -1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomialQ[a, b, c, 2, 
m, p, x]
 

rule 5517
Int[(ArcTan[(c_.)*(x_)]*(b_.) + (a_))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_) 
^2)^(q_.), x_Symbol] :> Simp[a   Int[(f*x)^m*(d + e*x^2)^q, x], x] + Simp[b 
   Int[(f*x)^m*(d + e*x^2)^q*ArcTan[c*x], x], x] /; FreeQ[{a, b, c, d, e, f 
, m, q}, x]
 

rule 5560
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(u_.), x_Symbol] :> Unintegrab 
le[u*(a + b*ArcTan[c*x])^p, x] /; FreeQ[{a, b, c, p}, x] && (EqQ[u, 1] || M 
atchQ[u, ((d_.) + (e_.)*x)^(q_.) /; FreeQ[{d, e, q}, x]] || MatchQ[u, ((f_. 
)*x)^(m_.)*((d_.) + (e_.)*x)^(q_.) /; FreeQ[{d, e, f, m, q}, x]] || MatchQ[ 
u, ((d_.) + (e_.)*x^2)^(q_.) /; FreeQ[{d, e, q}, x]] || MatchQ[u, ((f_.)*x) 
^(m_.)*((d_.) + (e_.)*x^2)^(q_.) /; FreeQ[{d, e, f, m, q}, x]])
 
3.12.88.4 Maple [N/A] (verified)

Not integrable

Time = 0.32 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.91

\[\int \frac {\left (e \,x^{2}+d \right )^{\frac {3}{2}} \left (a +b \arctan \left (c x \right )\right )}{x^{2}}d x\]

input
int((e*x^2+d)^(3/2)*(a+b*arctan(c*x))/x^2,x)
 
output
int((e*x^2+d)^(3/2)*(a+b*arctan(c*x))/x^2,x)
 
3.12.88.5 Fricas [N/A]

Not integrable

Time = 0.26 (sec) , antiderivative size = 40, normalized size of antiderivative = 1.74 \[ \int \frac {\left (d+e x^2\right )^{3/2} (a+b \arctan (c x))}{x^2} \, dx=\int { \frac {{\left (e x^{2} + d\right )}^{\frac {3}{2}} {\left (b \arctan \left (c x\right ) + a\right )}}{x^{2}} \,d x } \]

input
integrate((e*x^2+d)^(3/2)*(a+b*arctan(c*x))/x^2,x, algorithm="fricas")
 
output
integral((a*e*x^2 + a*d + (b*e*x^2 + b*d)*arctan(c*x))*sqrt(e*x^2 + d)/x^2 
, x)
 
3.12.88.6 Sympy [N/A]

Not integrable

Time = 13.83 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.96 \[ \int \frac {\left (d+e x^2\right )^{3/2} (a+b \arctan (c x))}{x^2} \, dx=\int \frac {\left (a + b \operatorname {atan}{\left (c x \right )}\right ) \left (d + e x^{2}\right )^{\frac {3}{2}}}{x^{2}}\, dx \]

input
integrate((e*x**2+d)**(3/2)*(a+b*atan(c*x))/x**2,x)
 
output
Integral((a + b*atan(c*x))*(d + e*x**2)**(3/2)/x**2, x)
 
3.12.88.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (d+e x^2\right )^{3/2} (a+b \arctan (c x))}{x^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate((e*x^2+d)^(3/2)*(a+b*arctan(c*x))/x^2,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.12.88.8 Giac [F(-1)]

Timed out. \[ \int \frac {\left (d+e x^2\right )^{3/2} (a+b \arctan (c x))}{x^2} \, dx=\text {Timed out} \]

input
integrate((e*x^2+d)^(3/2)*(a+b*arctan(c*x))/x^2,x, algorithm="giac")
 
output
Timed out
 
3.12.88.9 Mupad [N/A]

Not integrable

Time = 1.37 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00 \[ \int \frac {\left (d+e x^2\right )^{3/2} (a+b \arctan (c x))}{x^2} \, dx=\int \frac {\left (a+b\,\mathrm {atan}\left (c\,x\right )\right )\,{\left (e\,x^2+d\right )}^{3/2}}{x^2} \,d x \]

input
int(((a + b*atan(c*x))*(d + e*x^2)^(3/2))/x^2,x)
 
output
int(((a + b*atan(c*x))*(d + e*x^2)^(3/2))/x^2, x)